• Skip to Content
  • Skip to Main Navigation
  • Skip to Search

Indiana University Indiana University IU

Open Search
  • Who We Are
    • Leadership
      • Past Leadership
    • Advisory Boards
    • Researchers
      • Affiliates
    • Staff
    • Vision & Mission
    • Annual Reports
    • Careers
  • Who We Work With
    • Businesses and Nonprofits
    • Educators
    • Faculty
    • Local Governments
      • Resilience Cohort
      • Beat the Heat
      • ERI Toolkit
      • Hoosier Resilience Index
      • Indiana Resilience Funding Hub
    • Residents
      • Hoosier Resilience Heroes
    • Students
  • Programs
    • McKinney Climate Fellows
      • Students
      • Hosts
    • Resilience Cohort
    • Indiana Resilience Funding Hub
    • FARMWISE Indiana
    • Educating for Environmental Change
    • Beat the Heat
    • Hoosier Resilience Heroes
  • Research
  • Resources
  • News & Events
    • News
    • Events
    • Newsletters
  • Support Our Work
    • Individuals and Families
    • Corporations
    • Foundations
    • Ways to Give
    • Support ISRC
    • Resilient Communities
      • Bloomington
      • Fort Wayne
      • Indianapolis
      • South Bend
    • Contact
  • Study at IU
  • Contact

Environmental Resilience Institute

  • Home
  • Who We Are
    • Leadership
    • Advisory Boards
    • Researchers
    • Staff
    • Vision & Mission
    • Annual Reports
    • Careers
  • Who We Work With
    • Businesses and Nonprofits
    • Educators
    • Faculty
    • Local Governments
    • Residents
    • Students
  • Programs
    • McKinney Climate Fellows
    • Resilience Cohort
    • Indiana Resilience Funding Hub
    • FARMWISE Indiana
    • Educating for Environmental Change
    • Beat the Heat
    • Hoosier Resilience Heroes
  • Research
  • Resources
  • News & Events
    • News
    • Events
    • Newsletters
  • Support Our Work
    • Individuals and Families
    • Corporations
    • Foundations
    • Ways to Give
    • Support ISRC
    • Resilient Communities
    • Contact
  • Search
  • Study at IU
  • Contact
  • Home
  • News & Events
  • News
  • Archive
  • 2021
  • Scientists look to soils to learn how forests affect air quality and climate change

Scientists look to soils to learn how forests affect air quality and climate change

By: IU Biology

Monday, January 25, 2021

A trail in the Morgan-Monroe forest

Trees are often heralded as the heroes of environmental mitigation. They remove carbon dioxide from the atmosphere, which slows the pace of climate change, and sequester nutrients such as nitrogen, which improves water and air quality. Not all tree species, however, perform these services similarly, and some of the strongest impacts that trees have on ecosystems occur below the surface, away from the eyes of observers. This complicates efforts to predict what will happen as tree species shift owing to pests, pathogens, and climate change as well as to predict which species are most beneficial in reforestation efforts.

For years, researchers have sought to understand how and why forests comprised of different mixtures of tree species differ in their functioning. Because of the large number of species on Earth, it is impractical to study each tree species’ unique effects on carbon and nutrient cycling. Rather, there has been a push to classify trees into groups to help us predict the consequences of tree species shifts.

Researchers at Indiana University—in collaboration with scientists from West Virginia University, Jet Propulsion Laboratory, the University of Virginia, and the University of Warwick—have found that classifying temperate forest trees based on the type of symbiotic fungi with which the trees associate can serve as a broad indicator of how the trees and forests function.

Nearly all trees associate exclusively with one of two types of mycorrhizal fungi. These specialized fungi form mutualistic relationships with tree roots—enhancing the tree’s ability to obtain nutrients from soil in exchange for carbon from the tree. Because the type of fungi with which a tree often associates reflects and determines how trees function, grouping trees based on their mycorrhizal fungi has been proposed to be a good way to classify trees.

In two studies, one published in Global Change Biology and the other in Ecology Letters, the researchers reported that forest stands dominated by trees that associate with arbuscular mycorrhizal (AM) fungi differ from stands dominated by trees that associate with ectomycorrhizal (ECM) fungi in terms of how they store and retain carbon and nitrogen.

Read the full article

Additional links and resources

Donation button to Give Now to Environmental Resilience Institute
  • Twitter
  • Facebook
  • YouTube
  • LinkedIn

Indiana University

Accessibility | College Scorecard | Privacy Notice | Copyright © 2025 The Trustees of Indiana University