• Skip to Content
  • Skip to Main Navigation
  • Skip to Search

Indiana University Indiana University IU

Open Search
  • Who We Are
    • Leadership
      • Past Leadership
    • Advisory Boards
    • Researchers
      • Affiliates
    • Staff
    • Vision & Mission
    • Annual Reports
    • Careers
  • Who We Work With
    • Businesses and Nonprofits
    • Educators
    • Faculty
    • Local Governments
      • Resilience Cohort
      • Beat the Heat
      • ERI Toolkit
      • Hoosier Resilience Index
      • Indiana Resilience Funding Hub
    • Residents
      • Hoosier Resilience Heroes
    • Students
  • Programs
    • McKinney Climate Fellows
      • Students
      • Hosts
    • Resilience Cohort
    • Indiana Resilience Funding Hub
    • FARMWISE Indiana
    • Educating for Environmental Change
    • Beat the Heat
    • Hoosier Resilience Heroes
  • Research
  • Resources
  • News & Events
    • News
    • Events
    • Newsletters
  • Support Our Work
    • Individuals and Families
    • Corporations
    • Foundations
    • Ways to Give
    • Support ISRC
    • Resilient Communities
      • Bloomington
      • Fort Wayne
      • Indianapolis
      • South Bend
    • Contact
  • Study at IU
  • Contact

Environmental Resilience Institute

  • Home
  • Who We Are
    • Leadership
    • Advisory Boards
    • Researchers
    • Staff
    • Vision & Mission
    • Annual Reports
    • Careers
  • Who We Work With
    • Businesses and Nonprofits
    • Educators
    • Faculty
    • Local Governments
    • Residents
    • Students
  • Programs
    • McKinney Climate Fellows
    • Resilience Cohort
    • Indiana Resilience Funding Hub
    • FARMWISE Indiana
    • Educating for Environmental Change
    • Beat the Heat
    • Hoosier Resilience Heroes
  • Research
  • Resources
  • News & Events
    • News
    • Events
    • Newsletters
  • Support Our Work
    • Individuals and Families
    • Corporations
    • Foundations
    • Ways to Give
    • Support ISRC
    • Resilient Communities
    • Contact
  • Search
  • Study at IU
  • Contact
  • Home
  • News & Events
  • News
  • Archive
  • 2020
  • Migration shapes patterns of disease transmission

Migration shapes patterns of disease transmission

By: University of Georgia Today

Wednesday, September 16, 2020

Decorative: headshot of Daniel Becker
Daniel Becker

Long-distance animal migrations can trigger relapse of dormant infections, influencing when and where infection risk peaks, according to a new paper in Proceedings of the Royal Society B. The findings demonstrate that relapse can increase or decrease infection levels in migratory species, depending how deadly the disease is, and where in the migratory range it can be transmitted. As migratory animals often carry diseases that can jump from animals to humans, understanding how migratory relapse can shape infection risk has implications for public health.

Animal migration has the potential to influence the transmission of infectious diseases through several mechanisms. Migration can expose hosts to a greater number of infectious diseases because they cover a larger area and visit more habitats than residents. However, as long-distance movement is energetically taxing, migration can have a culling effect on infected hosts, thus reducing infection risk.

Ellen Ketterson

To better understand this phenomenon, known as migratory relapse, Hall and colleagues Daniel Becker and Ellen Ketterson of Indiana University developed a mathematical model to explore patterns of relapsing infections in migratory animals, and the implications for where and when infectious disease risk is highest.

Their model describes the annual cycle of a migratory animal, including a breeding season, a migration season and an overwintering season. It shows that for more benign pathogens that typically don’t kill their hosts, relapse can amplify infection throughout the year, and may play a key role in maintaining those pathogens in migratory populations. However, for deadlier and more easily transmitted pathogens, migratory relapse can have the opposite effect, reducing infection across the annual cycle by culling infected hosts during travel.

Read the full article

Additional links and resources

Donation button to Give Now to Environmental Resilience Institute
  • Twitter
  • Facebook
  • YouTube
  • LinkedIn

Indiana University

Accessibility | College Scorecard | Privacy Notice | Copyright © 2025 The Trustees of Indiana University